- java.lang.Object
-
- spice.basic.Vector3
-
- spice.basic.SubObserverRecord
-
public class SubObserverRecord extends Vector3
Class SubObserverRecord supports sub-observer point computations.A SubObserverRecord instance consists of
- A 3-dimensional vector representing the sub-observer point.
- The epoch of participation of the target body.
- The vector from the observer to the sub-observer point, expressed in the target body-fixed, body-centered reference frame, evaluated at the target body's epoch of participation.
See the detailed documentation of constructor
SubObserverRecord(String, Body, Time, ReferenceFrame, AberrationCorrection, Body)
for code examples.Files
Appropriate SPICE kernels must be loaded by the calling program before methods of this class are called.
The following data are required:
-
SPK data: the calling application must load ephemeris data
for the target and observer. If aberration
corrections are used, the states of the target body and of
the observer relative to the solar system barycenter must be
calculable from the available ephemeris data. Typically
ephemeris data are made available by loading one or more SPK
files via
KernelDatabase.load(java.lang.String)
. - Target body orientation data: these may be provided in a text or binary PCK file. In some cases, target body orientation may be provided by one more more CK files. In either case, data are made available by loading the files via KernelDatabase.load.
- Shape data for the target body:
PCK data: If the target body shape is modeled as an ellipsoid, triaxial radii for the target body must be loaded into the kernel pool. Typically this is done by loading a text PCK file via KernelDatabase.load. DSK data: If the target shape is modeled by DSK data, DSK files containing topographic data for the target body must be loaded. If a surface list is specified, data for at least one of the listed surfaces must be loaded.
The following data may be required:
- Frame data: if a frame definition is required to convert the observer and target states to the body-fixed frame of the target, that definition must be available in the kernel pool. Typically the definition is supplied by loading a frame kernel via KernelDatabase.load.
- Surface name-ID associations: if surface names are specified
in a constructors' `method' arguments,
the association of these names with their
corresponding surface ID codes must be established by
assignments of the kernel variables
NAIF_SURFACE_NAME NAIF_SURFACE_CODE NAIF_SURFACE_BODY
Normally these associations are made by loading a text kernel containing the necessary assignments. An example of such a set of assignments is
NAIF_SURFACE_NAME += 'Mars MEGDR 128 PIXEL/DEG' NAIF_SURFACE_CODE += 1 NAIF_SURFACE_BODY += 499
- SCLK data: if the target body's orientation is provided by CK files, an associated SCLK kernel must be loaded.
Kernel data are normally loaded once per program run, NOT every time a method of this class is called.
Class SubObserverRecord Particulars
Using DSK data
DSK loading and unloading
DSK files providing data used by this class are loaded by calling
KernelDatabase.load(java.lang.String)
and can be unloaded by callingKernelDatabase.unload(java.lang.String)
orKernelDatabase.clear()
. See the documentation ofKernelDatabase.load(java.lang.String)
for limits on numbers of loaded DSK files. For run-time efficiency, it's desirable to avoid frequent loading and unloading of DSK files. When there is a reason to use multiple versions of data for a given target body---for example, if topographic data at varying resolutions are to be used---the surface list can be used to select DSK data to be used for a given computation. It is not necessary to unload the data that are not to be used. This recommendation presumes that DSKs containing different versions of surface data for a given body have different surface ID codes.DSK data priority
A DSK coverage overlap occurs when two segments in loaded DSK files cover part or all of the same domain---for example, a given longitude-latitude rectangle---and when the time intervals of the segments overlap as well.
When DSK data selection is prioritized, in case of a coverage overlap, if the two competing segments are in different DSK files, the segment in the DSK file loaded last takes precedence. If the two segments are in the same file, the segment located closer to the end of the file takes precedence.
When DSK data selection is unprioritized, data from competing segments are combined. For example, if two competing segments both represent a surface as a set of triangular plates, the union of those sets of plates is considered to represent the surface.
Currently only unprioritized data selection is supported. Because prioritized data selection may be the default behavior in a later version of the routine, the UNPRIORITIZED keyword is required in the constructors' `method' arguments.
Version and Date
Version 2.0.0 10-JAN-2017 (NJB)
Upgraded to support DSK-based surface representations.This class now is derived from class Vector3.
Version 1.0.0 22-NOV-2009 (NJB)
-
-
Field Summary
Fields Modifier and Type Field Description static java.lang.String
INTERCEPT_ELLIPSOID
static java.lang.String
NEAR_POINT_ELLIPSOID
private Vector3
surfaceVector
private TDBTime
targetEpoch
-
Constructor Summary
Constructors Constructor Description SubObserverRecord()
No-arguments constructorSubObserverRecord(java.lang.String method, Body target, Time t, ReferenceFrame fixref, AberrationCorrection abcorr, Body observer)
Compute a specified sub-observer point; create a record containing the result.SubObserverRecord(SubObserverRecord subpt)
Copy constructor.This constructor creates a deep copy.
-
Method Summary
Modifier and Type Method Description Vector3
getSubPoint()
Return the sub-observer point.Vector3
getSurfaceVector()
Return the observer to sub-observer point vector.TDBTime
getTargetEpoch()
Return the target epoch.
-
-
-
Field Detail
-
NEAR_POINT_ELLIPSOID
public static final java.lang.String NEAR_POINT_ELLIPSOID
- See Also:
- Constant Field Values
-
INTERCEPT_ELLIPSOID
public static final java.lang.String INTERCEPT_ELLIPSOID
- See Also:
- Constant Field Values
-
targetEpoch
private TDBTime targetEpoch
-
surfaceVector
private Vector3 surfaceVector
-
-
Constructor Detail
-
SubObserverRecord
public SubObserverRecord(java.lang.String method, Body target, Time t, ReferenceFrame fixref, AberrationCorrection abcorr, Body observer) throws SpiceException
Compute a specified sub-observer point; create a record containing the result.Code Examples
The numerical results shown for these examples may differ across platforms. The results depend on the SPICE kernels used as input, the compiler and supporting libraries, and the machine specific arithmetic implementation.
- Find the sub-Earth point on Mars for a specified time.
Compute the sub-Earth points using both triaxial ellipsoid and topographic surface models. Topography data are provided by a DSK file. For the ellipsoid model, use both the "intercept" and "near point" sub-observer point definitions; for the DSK case, use both the "intercept" and "nadir" definitions.
Display the locations of both the Earth and the sub-Earth point relative to the center of Mars, in the IAU_MARS body-fixed reference frame, using both planetocentric and planetographic coordinates.
The topographic model is based on data from the MGS MOLA DEM megr90n000cb, which has a resolution of 4 pixels/degree. A triangular plate model was produced by computing a 720 x 1440 grid of interpolated heights from this DEM, then tessellating the height grid. The plate model is stored in a type 2 segment in the referenced DSK file.
Use the meta-kernel shown below to load the required SPICE kernels.
KPL/MK File: SubObserverRecordEx1.tm This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de430.bsp Planetary ephemeris mar097.bsp Mars satellite ephemeris pck00010.tpc Planet orientation and radii naif0012.tls Leapseconds megr90n000cb_plate.bds Plate model based on MEGDR DEM, resolution 4 pixels/degree. \begindata KERNELS_TO_LOAD = ( 'de430.bsp', 'mar097.bsp', 'pck00010.tpc', 'naif0012.tls', 'megr90n000cb_plate.bds' ) \begintext
Example code begins here.
// // Program SubObserverRecordEx1 // import spice.basic.*; import static spice.basic.AngularUnits.*; // // Find the sub-Earth point on Mars for a specified time. // public class SubObserverRecordEx1 { // // Load SPICE shared library. // static{ System.loadLibrary( "JNISpice" ); } public static void main( String[] args ) throws SpiceException { // // Local constants // final String META = "SubObserverRecordEx1.tm"; final int NMETH = 4; // // Local variables // AberrationCorrection abcorr = new AberrationCorrection( "CN+S" ); Body obsrvr = new Body( "Earth" ); Body target = new Body( "Mars" ); LatitudinalCoordinates latCoordsObs; LatitudinalCoordinates latCoordsSub; PlanetographicCoordinates pgrCoordsObs; PlanetographicCoordinates pgrCoordsSub; ReferenceFrame fixref = new ReferenceFrame( "IAU_MARS" ); String[] submth = { "Intercept/ellipsoid", "Near point/ellipsoid", "Intercept/DSK/Unprioritized", "Nadir/DSK/Unprioritized" }; String tdbstr = "2008 AUG 11 00:00:00 UTC"; SubObserverRecord subrec; TDBTime et; Vector3 obspos; Vector3 srfvec; double dist; double f; double odist; double opclat; double opclon; double opgalt; double opglat; double opglon; double[] radii; double re; double rp; double spclat; double spclon; double spcrad; double spgalt; double spglat; double spglon; int i; int n; try { // // Load kernels. // KernelDatabase.load( META ); // // Convert the UTC request time string to seconds past // J2000, TDB, represented by a TDBTime instance. // et = new TDBTime( tdbstr ); // // Look up the target body's radii. We'll use these to // convert Cartesian to planetographic coordinates. Use // the radii to compute the flattening coefficient of // the reference ellipsoid. // radii = target.getValues( "RADII" ); // // Let `re and `rp' be, respectively, the equatorial and // polar radii of the target. // re = radii[0]; rp = radii[2]; f = ( re - rp ) / re; // // Compute the sub-observer point using light time and stellar // aberration corrections. Use both ellipsoid and DSK // shape models, and use all of the "near point," // "intercept," and "nadir" sub-observer point definitions. // for ( i = 0; i < NMETH; i++ ) { System.out.format ( "%nSub-observer point computation " + "method = %s%n", submth[i] ); subrec = new SubObserverRecord ( submth[i], target, et, fixref, abcorr, obsrvr ); // // Compute the observer's distance from `subrec'. // srfvec = subrec.getSurfaceVector(); odist = srfvec.norm(); // // Convert sub-observer point rectangular coordinates to // planetographic longitude, latitude and altitude. // Convert radians to degrees. // pgrCoordsSub = new PlanetographicCoordinates( target, subrec, re, f ); spglon = pgrCoordsSub.getLongitude() * DPR; spglat = pgrCoordsSub.getLatitude() * DPR; spgalt = pgrCoordsSub.getAltitude(); // // Convert sub-observer point rectangular coordinates to // planetocentric latitude and longitude. Convert radians to // degrees. // latCoordsSub = new LatitudinalCoordinates( subrec ); spcrad = latCoordsSub.getRadius(); spclon = latCoordsSub.getLongitude() * DPR; spclat = latCoordsSub.getLatitude() * DPR; // // Compute the observer's position relative to the center // of the target, where the center's location has been // adjusted using the aberration corrections applicable // to the sub-point. Express the observer's location in // planetographic coordinates. // obspos = subrec.sub( srfvec ); pgrCoordsObs = new PlanetographicCoordinates( target, obspos, re, f ); opglon = pgrCoordsObs.getLongitude() * DPR; opglat = pgrCoordsObs.getLatitude() * DPR; opgalt = pgrCoordsObs.getAltitude(); // // Convert the observer's rectangular coordinates to // planetocentric radius, longitude, and latitude. // Convert radians to degrees. // latCoordsObs = new LatitudinalCoordinates( obspos ); opclon = latCoordsObs.getLongitude() * DPR; opclat = latCoordsObs.getLatitude() * DPR; // // Write the results. // System.out.format( "%n" + " Computation method = %s%n%n" + " Observer altitude relative to spheroid (km) = %21.9f%n" + " Length of SRFVEC (km) = %21.9f%n" + " Sub-observer point altitude (km) = %21.9f%n" + " Sub-observer planetographic longitude (deg) = %21.9f%n" + " Observer planetographic longitude (deg) = %21.9f%n" + " Sub-observer planetographic latitude (deg) = %21.9f%n" + " Observer planetographic latitude (deg) = %21.9f%n" + " Sub-observer planetocentric longitude (deg) = %21.9f%n" + " Observer planetocentric longitude (deg) = %21.9f%n" + " Sub-observer planetocentric latitude (deg) = %21.9f%n" + " Observer planetocentric latitude (deg) = %21.9f%n" + "%n", submth[i], opgalt, odist, spgalt, spglon, opglon, spglat, opglat, spclon, opclon, spclat, opclat ); } // End of method loop } // End of try block catch ( SpiceException exc ) { exc.printStackTrace(); } } // End of main method }
When this program was executed on a PC/Linux/gcc/64-bit/java 1.5 platform, the output was:
Sub-observer point computation method = Intercept/ellipsoid Computation method = Intercept/ellipsoid Observer altitude relative to spheroid (km) = 349199089.540947000 Length of SRFVEC (km) = 349199089.577642700 Sub-observer point altitude (km) = 0.000000000 Sub-observer planetographic longitude (deg) = 199.302305029 Observer planetographic longitude (deg) = 199.302305029 Sub-observer planetographic latitude (deg) = 26.262401237 Observer planetographic latitude (deg) = 25.994936751 Sub-observer planetocentric longitude (deg) = 160.697694971 Observer planetocentric longitude (deg) = 160.697694971 Sub-observer planetocentric latitude (deg) = 25.994934171 Observer planetocentric latitude (deg) = 25.994934171 Sub-observer point computation method = Near point/ellipsoid Computation method = Near point/ellipsoid Observer altitude relative to spheroid (km) = 349199089.540938700 Length of SRFVEC (km) = 349199089.540938700 Sub-observer point altitude (km) = -0.000000000 Sub-observer planetographic longitude (deg) = 199.302305029 Observer planetographic longitude (deg) = 199.302305029 Sub-observer planetographic latitude (deg) = 25.994936751 Observer planetographic latitude (deg) = 25.994936751 Sub-observer planetocentric longitude (deg) = 160.697694971 Observer planetocentric longitude (deg) = 160.697694971 Sub-observer planetocentric latitude (deg) = 25.729407227 Observer planetocentric latitude (deg) = 25.994934171 Sub-observer point computation method = Intercept/DSK/Unprioritized Computation method = Intercept/DSK/Unprioritized Observer altitude relative to spheroid (km) = 349199089.541017230 Length of SRFVEC (km) = 349199091.785406700 Sub-observer point altitude (km) = -2.207669751 Sub-observer planetographic longitude (deg) = 199.302304999 Observer planetographic longitude (deg) = 199.302304999 Sub-observer planetographic latitude (deg) = 26.262576677 Observer planetographic latitude (deg) = 25.994936751 Sub-observer planetocentric longitude (deg) = 160.697695001 Observer planetocentric longitude (deg) = 160.697695001 Sub-observer planetocentric latitude (deg) = 25.994934171 Observer planetocentric latitude (deg) = 25.994934171 Sub-observer point computation method = Nadir/DSK/Unprioritized Computation method = Nadir/DSK/Unprioritized Observer altitude relative to spheroid (km) = 349199089.541007700 Length of SRFVEC (km) = 349199091.707172300 Sub-observer point altitude (km) = -2.166164622 Sub-observer planetographic longitude (deg) = 199.302305000 Observer planetographic longitude (deg) = 199.302305000 Sub-observer planetographic latitude (deg) = 25.994936752 Observer planetographic latitude (deg) = 25.994936751 Sub-observer planetocentric longitude (deg) = 160.697695000 Observer planetocentric longitude (deg) = 160.697695000 Sub-observer planetocentric latitude (deg) = 25.729237570 Observer planetocentric latitude (deg) = 25.994934171
-
Use this constructor to find the sub-spacecraft point on Mars for the
Mars Reconnaissance Orbiter spacecraft (MRO) at a specified time,
using both the 'Ellipsoid/Near point' computation method and an
ellipsoidal target shape, and the "DSK/Unprioritized/Nadir"
method and a DSK-based shape model.
Use both LT+S and CN+S aberration corrections to illustrate the differences.
Convert the spacecraft to sub-observer point vector obtained from this constructor into the MRO_HIRISE_LOOK_DIRECTION reference frame at the observation time. Perform a consistency check with this vector: compare the Mars surface intercept of the ray emanating from the spacecraft and pointed along this vector with the sub-observer point.
Perform the sub-observer point and surface intercept computations using both triaxial ellipsoid and topographic surface models.
For this example, the topographic model is based on the MGS MOLA DEM megr90n000eb, which has a resolution of 16 pixels/degree. Eight DSKs, each covering longitude and latitude ranges of 90 degrees, were made from this data set. For the region covered by a given DSK, a grid of approximately 1500 x 1500 interpolated heights was produced, and this grid was tessellated using approximately 4.5 million triangular plates, giving a total plate count of about 36 million for the entire DSK set.
All DSKs in the set use the surface ID code 499001, so there is no need to specify the surface ID in the `method' strings passed to the SubObserverRecord and SurfaceIntercept constructors.
Use the meta-kernel shown below to load the required SPICE kernels.
KPL/MK This meta-kernel is intended to support operation of SPICE example programs. The kernels shown here should not be assumed to contain adequate or correct versions of data required by SPICE-based user applications. In order for an application to use this meta-kernel, the kernels referenced here must be present in the user's current working directory. The names and contents of the kernels referenced by this meta-kernel are as follows: File name Contents --------- -------- de430.bsp Planetary ephemeris mar097.bsp Mars satellite ephemeris pck00010.tpc Planet orientation and radii naif0012.tls Leapseconds mro_psp4_ssd_mro95a.bsp MRO ephemeris mro_v11.tf MRO frame specifications mro_sclkscet_00022_65536.tsc MRO SCLK coefficients parameters mro_sc_psp_070925_071001.bc MRO attitude megr90n000eb_*_plate.bds Plate model DSKs based on MEGDR DEM, resolution 16 pixels/degree. \begindata KERNELS_TO_LOAD = ( 'de430.bsp', 'mar097.bsp', 'pck00010.tpc', 'naif0012.tls', 'mro_psp4_ssd_mro95a.bsp', 'mro_v11.tf', 'mro_sclkscet_00022_65536.tsc', 'mro_sc_psp_070925_071001.bc', 'megr90n000eb_LL000E00N_UR090E90N_plate.bds' 'megr90n000eb_LL000E90S_UR090E00S_plate.bds' 'megr90n000eb_LL090E00N_UR180E90N_plate.bds' 'megr90n000eb_LL090E90S_UR180E00S_plate.bds' 'megr90n000eb_LL180E00N_UR270E90N_plate.bds' 'megr90n000eb_LL180E90S_UR270E00S_plate.bds' 'megr90n000eb_LL270E00N_UR360E90N_plate.bds' 'megr90n000eb_LL270E90S_UR360E00S_plate.bds' ) \begintext
Example code begins here.
// // Program SubObserverRecordEx2 // import spice.basic.*; import static spice.basic.AngularUnits.*; // // This program finds the sub-spacecraft point on Mars for the // Mars Reconnaissance Orbiter spacecraft (MRO) at a specified time, // using both the 'Ellipsoid/Near point' computation method and an // ellipsoidal target shape, and the "DSK/Unprioritized/Nadir" // method and a DSK-based shape model. // public class SubObserverRecordEx2 { // // Load SPICE shared library. // static{ System.loadLibrary( "JNISpice" ); } public static void main( String[] args ) throws SpiceException { // // Local constants // final String META = "SubObserverRecordEx2.tm"; final int NCORR = 2; final int NMETH = 2; // // Local variables // AberrationCorrection[] abcorr = { new AberrationCorrection( "LT+S" ), new AberrationCorrection( "CN+S" ) }; Body obsrvr = new Body( "MRO" ); Body target = new Body( "Mars" ); LatitudinalCoordinates latCoords; Matrix33 xform; ReferenceFrame fixref = new ReferenceFrame( "IAU_MARS" ); ReferenceFrame hiref = new ReferenceFrame( "MRO_HIRISE_LOOK_DIRECTION" ); String[] sinmth = { "Ellipsoid", "DSK/Unprioritized" }; String[] submth = { "Ellipsoid/Near point", "DSK/Unprioritized/Nadir" }; String tdbstr = "2007 SEP 30 00:00:00 TDB"; SubObserverRecord subrec; SurfaceIntercept surfx; TDBTime et; TDBTime trgepc; Vector3 mrovec; Vector3 srfvec; boolean found; double alt; double dist; double lat; double lon; double radius; int i; int j; try { // // Load kernels. // KernelDatabase.load( META ); // // Convert the TDB request time string to ET (seconds past // J2000, TDB), represented by a TDBTime instance. // et = new TDBTime( tdbstr ); // // Compute the sub-spacecraft point using each method. // Compute the results using both LT+S and CN+S aberration // corrections. // for ( i = 0; i < NMETH; i++ ) { System.out.format ( "%nSub-observer point computation " + "method = %s%n", submth[i] ); for ( j = 0; j < NCORR; j++ ) { subrec = new SubObserverRecord ( submth[i], target, et, fixref, abcorr[j], obsrvr ); // // Compute the observer's altitude above `subrec'. // srfvec = subrec.getSurfaceVector(); alt = srfvec.norm(); // // Express `srfvec' in the MRO_HIRISE_LOOK_DIRECTION // reference frame at epoch `et'. Since `srfvec' is expressed // relative to the IAU_MARS frame at `trgepc', we must // call getPositionTransformation(ReferenceFrame, // Time,Time) to compute the position transformation matrix // from IAU_MARS at `trgepc' to the MRO_HIRISE_LOOK_DIRECTION // frame at time `et'. // trgepc = subrec.getTargetEpoch(); xform = fixref.getPositionTransformation( hiref, trgepc, et ); mrovec = xform.mxv( srfvec ); // // Convert sub-observer point rectangular coordinates to // planetocentric latitude and longitude. Convert radians to // degrees. // latCoords = new LatitudinalCoordinates( subrec ); radius = latCoords.getRadius(); lon = latCoords.getLongitude() * DPR; lat = latCoords.getLatitude() * DPR; // // Write the results. // System.out.format( "%n" + " Aberration correction = %s%n%n" + " MRO-to-sub-observer vector in%n" + " MRO HIRISE look direction frame%n" + " X-component (km) = %21.9f%n" + " Y-component (km) = %21.9f%n" + " Z-component (km) = %21.9f%n" + " Sub-observer point radius (km) = %21.9f%n" + " Planetocentric latitude (deg) = %21.9f%n" + " Planetocentric longitude (deg) = %21.9f%n" + " Observer altitude (km) = %21.9f%n", abcorr[j], mrovec.getElt(0), mrovec.getElt(1), mrovec.getElt(2), radius, lat, lon, alt ); // // Consistency check: find the surface intercept on // Mars of the ray emanating from the spacecraft and having // direction vector `mrovec' in the MRO HIRISE look direction // reference frame at `et'. Call the intercept point // `xpoint'. `xpoint' should coincide with `subrec', up to a // small round-off error. // surfx = new SurfaceIntercept( sinmth[i], target, et, fixref, abcorr[j], obsrvr, hiref, mrovec ); if ( !surfx.wasFound() ) { System.out.format ( "Bug: no intercept%n" ); } else { // // Report the distance between `surfx' and `subrec'. // System.out.format( " Intercept comparison error " + "(km) = %21.9f\n\n", surfx.getIntercept().dist( subrec ) ); } } // End of aberration correction loop } // End of method loop } // End of try block catch ( SpiceException exc ) { exc.printStackTrace(); } } // End of main method }
When this program was executed on a PC/Linux/gcc/64-bit/java 1.5 platform, the output was:
Sub-observer point computation method = Ellipsoid/Near point Aberration correction = LT+S MRO-to-sub-observer vector in MRO HIRISE look direction frame X-component (km) = 0.286933229 Y-component (km) = -0.260425939 Z-component (km) = 253.816326386 Sub-observer point radius (km) = 3388.299078378 Planetocentric latitude (deg) = -38.799836378 Planetocentric longitude (deg) = -114.995297227 Observer altitude (km) = 253.816622175 Intercept comparison error (km) = 0.000002144 Aberration correction = CN+S MRO-to-sub-observer vector in MRO HIRISE look direction frame X-component (km) = 0.286933107 Y-component (km) = -0.260426683 Z-component (km) = 253.816315915 Sub-observer point radius (km) = 3388.299078376 Planetocentric latitude (deg) = -38.799836382 Planetocentric longitude (deg) = -114.995297449 Observer altitude (km) = 253.816611705 Intercept comparison error (km) = 0.000000001 Sub-observer point computation method = DSK/Unprioritized/Nadir Aberration correction = LT+S MRO-to-sub-observer vector in MRO HIRISE look direction frame X-component (km) = 0.282372596 Y-component (km) = -0.256289313 Z-component (km) = 249.784871247 Sub-observer point radius (km) = 3392.330239436 Planetocentric latitude (deg) = -38.800230156 Planetocentric longitude (deg) = -114.995297338 Observer altitude (km) = 249.785162334 Intercept comparison error (km) = 0.000002412 Aberration correction = CN+S MRO-to-sub-observer vector in MRO HIRISE look direction frame X-component (km) = 0.282372464 Y-component (km) = -0.256290075 Z-component (km) = 249.784860121 Sub-observer point radius (km) = 3392.330239564 Planetocentric latitude (deg) = -38.800230162 Planetocentric longitude (deg) = -114.995297569 Observer altitude (km) = 249.785151209 Intercept comparison error (km) = 0.000000001
- Parameters:
method
-observer
-target
-abcorr
-t
-fixref
-- Throws:
SpiceException
- exeption
- Find the sub-Earth point on Mars for a specified time.
-
SubObserverRecord
public SubObserverRecord()
No-arguments constructor
-
SubObserverRecord
public SubObserverRecord(SubObserverRecord subpt) throws SpiceException
Copy constructor.This constructor creates a deep copy.- Parameters:
subpt
-- Throws:
SpiceException
- exeption
-
-
Method Detail
-
getSubPoint
public Vector3 getSubPoint()
Return the sub-observer point.- Returns:
-
getTargetEpoch
public TDBTime getTargetEpoch() throws SpiceException
Return the target epoch.- Returns:
- Throws:
SpiceException
- exeption
-
getSurfaceVector
public Vector3 getSurfaceVector()
Return the observer to sub-observer point vector.- Returns:
-
-